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The cardiac system shows various scale dynamic activities from secondly to yearly. Therefore multiple
time-scale characteristics of heart dynamics have received much attention for understanding and distinguishing
healthy and pathological cardiac systems. In this paper we expand the multiple time-scale analysis into event
and time scales to investigate scale characteristics in healthy and pathologic cardiac systems. To do this, we
define a measure based on symbolic dynamics, which calculates complexity at each time and event scale,
called the unit time block entropy �UTBE�. This measure allows a reliable comparison of experimental data
through matching the number of words and the total measurement time at the same time for all RR interval
sequences which are composed of the time durations between consecutive R waves of electrocardiograms. We
apply the UTBE to the healthy heart-rate �HR� group and pathological HR groups and find that the RR interval
acceleration is more effective than the RR interval in distinguishing each group. And we also find that the
normal and pathological HR groups are clearly distinguished in some specific event and time-scale regions.
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I. INTRODUCTION

During the last decade, heart dynamics based on nonlinear
dynamics theory has been actively investigated �1–3�. How-
ever, the direct application of chaos theory encountered dif-
ficulties due to intrinsic problems such as limited data, noise
contamination, and nonstationarity in physiological data such
as the heart rate �HR�. Therefore recent research has focused
more on irregularity and complexity than chaos and deter-
minism as a language to understand the HR �4�. It is shown
that the cardiac system shows various time scales: the yearly
scale for an age related change associated with the functional
maturation of the cardiac muscle, the monthly scale for a
seasonal change associated with temperature fluctuation and
the change of hormonal profile, the daily scale for the 24 h
change of the autonomic nervous system, the hourly scale for
the 1–3 h hormonal change, the minutely scale for the
change of circulating blood, and the secondly scale for the
activity of the reflex mechanisms involved in cardiovascular
control �5�. Thus the highly complex and nonlinear charac-
teristics of the HR may appear due to scale-invariant and
multiscale properties of beat-to-beat fluctuations of heart rate
variability �HRV�. Using these properties, the normal and
pathological HRVs have been practically distinguished �6�.
This multitime-scale concept could provide an answer on
why the healthy HR dynamics, which contains long range
correlations, is more complex than that of the pathological
HR, which is associated with the random output. To justify
this, the multiscale entropy, which quantifies the multitime-

scale complexity in the HR, was introduced and applied to
the robust classification between the normal HRV group and
the pathological HRV groups �7–10�.

In order to treat the complex heart rhythms, various tech-
niques based on information theory have been widely ap-
plied �11,12�. As a measure of complexity, different defini-
tions of the entropy have been introduced based on symbolic
dynamics. Although it is not easy to find the generating par-
tition in real experimental data, which is still an open prob-
lem, several studies have suggested that an appropriate sym-
bolization process could provide useful results, in particular,
in HRV analysis �13�. The symbolization process loses some
amount of detailed information but some of the invariant,
robust properties of dynamics survive �14–16�. Cysaz et al.
showed that the transformation into the binary sequence ex-
tracts solely dynamical properties of the RR series which are
composed of the time durations between consecutive R
waves of the electrocardiogram, and that the symbolization
of differences between RR intervals eliminates nonstationari-
ties resulting from a minor bias underlying the RR ta-
chogram �17�. Some complexity measures based on sym-
bolic dynamics, in which four symbols from the RR interval
and the RR interval acceleration were chosen, may be used
to define the risk for the sudden cardiac death from the HRV
�18�. Two parameters from symbolic dynamics for measuring
the low variability and regularity in the HRV can be used to
discriminate VT-VF patients with implanted cardioverter
defibrillators �19�. If a threshold for symbolization is suitably
chosen to reflect the whole internal complex structure of the
dynamical system, it is possible to consistently quantify the
complexity of physiological signals and noisy signals �20�.

Most conventional linear and nonlinear measures fix the
size of the RR interval due to the algorithmic constraints.
However, it may cause a large difference in total measure-
ment time between all HR data sets being compared as in
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Fig. 1. Particularly, it could influence a nonlinear measure
due to the nonstationarity and noise involved in the addi-
tional HR periods, which is very difficult to estimate. Con-
versely, fixing the total measurement time of the RR interval
makes it difficult to directly compare nonlinear measures be-
cause of the different size of the HR data set. To indirectly
handle this fundamental problem of interval data, a few
methods such as resampling, appropriate data selection, and
correction of the finite sample effect have been introduced.

The resampling method makes the size of the HR data set
for comparison to be the same through an even sampling
from RR interval sequences interpolated by various fitting
methods, after fixing the total measurement time. However, it
inevitably produces a number of unexpected artificial data in
addition to the original RR sequences, for example, the dis-
tortion of the short term correlation of HR data �21�. As in
the case of the other methods, if the interval and the duration
of HR data deviate more than 20% from those of other HR
data sets compared, the HR data is excluded from the analy-
sis. However, this method could result in an artificial homog-
enous HR data set and it cannot match the size and measure-
ment time at the same time �22�. In particular, when a
nonlinear measure such as the approximate entropy �APEN�,
which depends significantly on the number of data, is used
without matching the number of data and the total measure-
ment time at the same time, a reliable comparison between
HR groups could not accomplished. In another approach, we
may fix the total measurement time and then correct the fi-
nite sample effect by estimating the distribution of sampled
data, adding a correction term into the entropy estimation. In
this case, according to how precisely the distribution of
sampled HR data is estimated, which is not an easy task, in
practice, the accuracy of entropy estimation is determined
�23�.

Theoretically, if time interval dynamics of the stationary
system with a sufficiently large number of data satisfies one-

to-one correspondence with original dynamics, the nonlinear
measures such as the Lyapunov exponent and the fractal di-
mension can reliably approximate those of original dynam-
ics, although data sizes are different �24,25�. But in the case
of HR, since it is intrinsically nonstationary and has a limi-
tation of the finite data size, we should take into account
matching the size and the total measurement time together
before applying any nonlinear measures.

In this paper we expand the multiple time-scale analysis
into event and time scales to investigate scale characteristics
in healthy and pathologic cardiac systems. We define a mea-
sure based on symbolic dynamics, which calculates com-
plexity at each time and event scales, called the unit time
block entropy �UTBE�. This measure allows a reliable com-
parison of experimental data through matching the number
of words and the total measurement time at the same time for
all RR interval sequences. We apply the UTBE to the healthy
HR group and the pathological HR groups and find that the
RR interval acceleration is more effective than the RR inter-
val in distinguishing each group. By scanning the parameters
of the event and time scales we also find that the normal and
pathological HR groups are clearly distinguished in some
specific event and time-scale regions. We show that the
UTBE shows better classification performance than the lin-
ear methods and the conventional multiscale entropy. We
find that among two types of scale used, the event scale
provides us with more important information for the efficient
classification of normal and two pathologic HR groups. The
practicality of our approach is tested by scanning the event
and time-scale and computing the sensitivity and the speci-
ficity of the classification. Our method is quite general and
can be extended to the symbolic dynamics analysis of other
complex time series.

II. SIMPLE BLOCK ENTROPY (SBE) AND UNIT TIME
BLOCK ENTROPY (UTBE)

To quantify event and time-scale characteristics of the
heart rate, we define an entropy based on symbolic dynam-
ics. First, we define a word sequence from the RR interval
sequence. To construct a word, we use two different meth-
ods; the block windowing method and the unit time window-
ing method. In the block windowing method, each word is
composed of RR interval values of the same size which are
symbolized by the RR interval threshold or the RR accelera-
tion threshold. In unit time windowing method, each word is
composed from a unit time window, so the number of sym-
bols involved in each word can be different.

The RR interval sequence is given by TI
= �x1 ,x2 , . . . ,xi , . . . ,xn� and the RR interval acceleration se-
quence by �TI= �t1 , t2 , . . . , ti , . . . , tn−1�, ti=xi+1−xi. A word is
defined by

vi = �sisi+1 ¯ si+j ¯ si+n� �block� , �1�

wi = �sisi+1 ¯ si+j ¯ si+n�i�� �unit time� , �2�

where

si+j = �0, if �ti+j� � �

1, if �ti+j� � � .
	 �3�

FIG. 1. The variation of measurement time after fixing the num-
ber of RR interval sequences in healthy and pathologic groups. The
mean and standard deviation of 54 subjects is
180.92±34.825 �min�, it shows a large variation. �normal sinus
rhythms �NSR�, congestive heart failure �CHF�, and artrial fibrilla-
tion �AF�.�
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For the case of the unit time windowing method, the num-
ber of symbols, n�i�, can be different at each unit time-scale
UT, satisfying 
k=i

i+n�i�xk�UT. A symbol si+j, which is used to
construct a word, is 1 for RR acceleration �ti+j� larger than �
and 0 otherwise. Then UT is a unit time for constructing a
word and � is a RR interval threshold or a RR acceleration
threshold for binary symbolization. Here, the RR accelera-
tion threshold is used for illustration. Thus a certain word wi
defined like this contains both information about the time-
scale and the event scale of HRs, so that it defines a state of
specific scale events of the cardiac system during a unit time.
The event scale varies from 5% to 95% in 20 steps of cumu-
lative rank, which is composed of all RR acceleration values
from normal and pathological HR data sets. The time-scale
varies from 2 to 20 s in 20 steps, where 2 s is the smallest
time to avoid an empty word.

Figure 2 presents different ways to compose a word se-
quence from a RR interval sequence. In the case of the block
windowing method, a word is defined regularly with the
block size of n=2 and the block is shifted to the next by one
step. In the case of the unit time windowing method, a word
is defined with unit time UT and the unit time window is
shifted by 0.5 s to define the next word, allowing the win-
dow overlap. The window shifting time of 0.5 s is appropri-
ately chosen to take an adequate number of sampled words.
When we previously determined the measurement time of all
RR interval sequences, the unit time widowing method can
match the number of words and the total measurement time
of different RR interval sets, while the block windowing
method cannot match the number of words of RR interval
sets. Therefore through these procedures we will investigate
the advantage of the unit time windowing method in the
analysis of unevenly sampled RR interval data.

With the above methods for the word construction, we can
compose a word sequence from a RR interval sequence. Let
W= �w1 ,w2 , . . . ,wn� be a finite, nonempty set which we refer
to as an alphabet. A string or word over W is simply a finite
sequence of elements of W. An alphabet W has the following
relation:

Wn � Wn � W*, W0 = W0 = � “ empty word, ” �4�

where W* is the set of all words over W, including the empty
word, �, Wn is the set of all words over W of length n or
less, and Wn is the set of all words over W of length n. The
number of possible words of Wn and Wn are N�n�=s1+ ¯

+si+ ¯ +sn=s�n+1�−s /s−1 and N�n�=sn, respectively, and s
is the s-ary number, which in our case is binary �s=2�. The
number of possible symbols in a word, n�i�, varies with the
unit time UT and the smallest RR interval time Ts. Since n�i�
depends on Ts, which is sensitive to ectopic beats or short
term noisy beats, careful noise reduction methods should be
employed during preprocessing.

Based on two methods of composing a word sequence, we
calculate two types of the symbolic entropy: The simple
block entropy �SBE� quantifies the complexity of a word
sequence composed by the block windowing method at a
specific event and time-scale region. The unit time block
entropy �UTBE� is defined similarly for the unit time win-
dowing method.

The entropy, H�UT ,��, is a function of the time-scale UT

and the event scale �.

H�UT,�� = − 

i=1

N�UT�

pi log2 pi, �5�

where p�i�=N�wi� /N�W� is the estimate of the frequency of a
word wi, N�wi� the frequency of the word wi, and N�W� the
total number of sampled words. To calculate the exact prob-
ability of the word wi, infinite words should be considered.
For s=2, the SBE and the UTBE vary from the lower bound
with complete regularity, and the upper bound with equally
probable words.

We construct an appropriate word ensemble from a RR
sequence by taking the unit time-scale up to five steps �about
6 s� for the UTBE. At this time-scale, the largest number of
symbols contained in a word from our data set is 11. The
number of possible words is 211=2048, while the number of
sampled words from our RR interval sequence is 10 646 at
this unit time-scale, which is sufficient for reliable calcula-
tion of the entropy. For the SBE, we take the size of the
block up to n=10. At this block size, the number of possible
words is 210=1024. In the following applications, we com-
pare the performance of two different entropies and show
that the event scale is more useful for classification of the
healthy and two pathological HR groups than the time-scale.

III. APPLICATION TO NORMAL AND PATHOLOGICAL
HR

We applied the UTBE to 54 RR interval data from the
healthy group �normal sinus rhythms �NSR�=21� and two
pathological groups �congestive heart failure �CHF�=15, ar-
trial fibrillation �AF�=18�, which are taken from PhysioNet
Databank in the MIT-BIH database. Each RR interval se-
quence has a 10–20 h length, which is taken from the am-
bulatory ECG recorder and sampled at 128 and 250 samples
per second with a 12-bit resolution over a range of ±10 mV.
We extracted the RR interval sequence from the ECG record-

FIG. 2. Two different ways to compose a word sequence from a
RR interval sequence. The upper case presents how to compose a
word sequence from a RR interval sequence with the unit time
windowing method, on the other hand, the lower case presents how
to compose a word sequence with the block windowing method.
The former focuses on unit time to define a word but the latter
focuses on the number of symbols, in this example, the block size is
n=2, to define a word.
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ing using the PhysioNet software �26�. After matching the
number of RR intervals between 54 subjects with the shortest
number� �N=15 000� among subjects, the total measurement
time is shown in Fig. 1. The measurement time of RR inter-
val sequences is widely varying among the subjects with the
mean and standard deviation of 180.92±34.825�min� and the
maximal time difference of 178.78�min�. For the unit time
windowing method, the measurement time is matched to 1 h
28 min, where the number of words varies from N�W�
=10 652 at UT=2 s to N�W�=10 636 at UT=20 s, depending
on the unit time-scale.

A. Linear properties

Before applying the UTBE to the above data set, we in-
vestigate conventional linear properties such as the mean and
the standard deviation and the student t-test between the
healthy and pathological groups �NSR, CHF, and AF�. In
Fig. 3�a�, linear properties such as the mean, standard devia-
tions, and the log-log distribution of the RR acceleration
from the NSR, CHF, and AF groups are presented. The result
of the student t-test about the mean and standard deviation
distributions, which statistically identifies whether three HR
groups have different mean values, shows that three groups
are distinguishable by these two linear properties, resulting
in significant p-values for the mean and the standard devia-
tions �p-value �for mean/standard deviation�: NSR and CHF
�0.005/2�10−4�, NSR and AF �0.045/0.4�, CHF and AF
�0.157/10−6��. But although some pairs of HR groups are
distinguishable in the mean values of their groups, the clas-
sification performance is not so good, in the practical view
point, it might not be helpful. So we need more information
from HR data groups. In Fig. 3�b�, the RR interval accelera-
tion shows a power-law distribution, while the RR interval
shows the Gaussian distribution which is not presented in
this figure. This suggests that the RR interval acceleration,
not the RR interval, has nonlinear characteristics, so that the
RR interval acceleration is more relevant as a threshold for
the binary symbolization than the RR interval.

B. Simple block entropy

In order to get additional information from nonlinear
properties, we investigate the relative scale characteristics
between the normal HR group and two pathological HR
groups at various event and time scales using the simple
block entropy �SBE�. Each event scale is determined by the
RR acceleration values, which vary in 20 steps from 5% to
95% of the accumulative rank for all RR interval accelera-
tion values from three groups. After the binary symbolization
at each event scale and composing a word set with each
time-scale, we calculate the entropy of the binary symbolized
word set. Though the meaningful time-scale region is up to
five steps �about 6 s�, its size is expanded up to 20 steps to
show that the classification works for a larger block size. For
comparing SBE between 54 subjects, the number of RR in-
tervals is determined with the shortest number �N=15,000�
among subjects, so the number of words is the same but the
measurement time is different between 54 subjects.

In Figs. 4�a�–4�f�, in order to compare SBE distributions
among NSR, CHF, and AF groups, all p-values of the student
t-test in the �UT ,�� parameter plane are presented. Since the
scale characteristics of three groups are not known a priori,
we scanned all event and block sizes for optimization of the
classification. For the CHF and AF cases in Figs. 4�a� and
4�d�, most event sequences composed by 60–95% rank
thresholds are significantly distinguished over all time scales
for both the RR interval and the RR interval acceleration
used as the threshold �p	0.01�. This suggests that the CHF
and AF groups have relatively different characteristic scales
in dynamical complexity in the larger RR interval and the
larger RR interval acceleration sequences. For the CHF and
NSR groups, event sequences composed by most accelera-
tion scales except the 50–65% rank region are distinguished
in their complexity �p	0.01� �Fig. 4�e��, whereas the differ-
ence is not significant for event sequences constructed by the

FIG. 3. �a� The mean and standard deviations of NSR, CHF, and
AF’s RR interval sequences �unit: second�. �b� The log-log plot of
RR interval acceleration. The log-log distribution of RR accelera-
tion shows power-law distribution, while the log-log distribution of
RR interval shows Gaussian distribution �diff�RR�: the time dura-
tion between two consecutive R waves �second�, and C: the count in
each bin�.
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RR interval scale �Fig. 4�b��. It suggests that the RR accel-
erations of CHF and NSR groups contain some information
on the different internal dynamics of the cardiac system. For
the AF and NSR groups, most RR interval scales could not
discriminate between these two groups except the narrow
region from the 50 to 55% rank scales �Fig. 4�c��, whereas
most acceleration scales below the 75% rank scale signifi-
cantly discriminate between these two groups �Fig. 4�f��.

The information on the characteristic event and time-scale
regions of three different groups can be used to determine the
optimal parameters for the classification of one group from
the others. It should be noted that between two types of
scales, the event scale is more effective than the time scale in
classifying these groups. If two groups are discriminated at

event scale regions, these are also discriminated well over
most time scales for one event scale. These results suggest
that the RR interval acceleration contains typical information
about cardiac dynamics of three groups, whereas the RR in-
terval does not. Based on the fact that slow or fast accelera-
tion of the cardiac system is associated with vagal activity, it
may provide some clues to which functional difference of
cardiac systems causes such differences in healthy and
pathological groups.

Figures 4�g�–4�i� present the sensitivity and specificity
between the NSR, CHF, and AF groups with linear properties
and two types of the SBE. The sensitivity determines, when
a SBE value is given for classifying two groups �NSR, AF�
as a threshold, what percentage of the subjects involved in

FIG. 4. The student t-test �p-value� and the sensitivity and specificity between NSR, CHF, and AF groups for the SBE using the RR
interval and the RR interval acceleration as the symbolization thresholds. �a�–�c� The p-values between three groups at the �UT ,�� parameter
set using the RR interval as a threshold. �CHF and AF, CHF and AF, AF and NSR�. �d�–�f� The p-values between three groups at the �UT ,��
parameter set using the RR interval acceleration as a threshold. �CHF and AF, CHF and AF, AF and NSR�, Units �event scale: 20 steps from
5% to 95% of the accumulative ranks for all RR interval or RR acceleration values, time scale: the block size �1–20��. �g�–�i� The sensitivity
and specificity between three groups in two SBEs and two linear properties �mean, standard deviation� �dotted line: mean, dot dashed line:
standard deviation, bold solid line: the SBE using the RR interval acceleration, bold dotted line: the SBE using the RR interval�. �g� CHF and
AF, �h� CHF and NSR, and �i� AF and NSR.
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the NSR group is correctly classified by the given threshold
SBE value, while the specificity determines, when a SBE
value is given for classifying two groups as a threshold, what
percentage of the subjects involved in the other group �AF�
is correctly excluded from the NSR group. So if the sensi-
tivity and specificity are all 100%, the two groups are exactly
classified by the given threshold. Here, the best sensitivity
and specificity are achieved after calculating them at all
points of the �UT ,�� space, varying the threshold from the
minimum SBE to the maximum SBE value of the calculated
SBE set. Here, when both values which cross the diagonal
line in the sensitivity and specificity plane have the highest
values comparing with the values at the other �UT ,�� points,
we determine them as the best sensitivity and specificity

�27�. In Figs. 4�g�–4�i�, the best sensitivity and specificity in
the �UT ,�� plane is presented for the four measures for com-
parison, respectively. We find that the SBE using the RR
interval acceleration as a threshold provides the best perfor-
mance in classification of CHF and AF, CHF and NSR, and
AF and NSR groups. For the case of AF and NSR groups,
the SBE using the RR interval acceleration as a threshold
significantly distinguishes these groups �sensitivity=91%,
specificity=91%�, although they cannot be distinguished
with linear properties. However, in spite of the good perfor-
mance by the SBE, we should consider the effects of differ-
ent measurement time between HR groups being compared.
Since the size of the sequence is fixed in advance, the mea-
surement time varies widely as in Fig. 1. From the investi-

FIG. 5. The student t-test �p-value� and the sensitivity and specificity between NSR, CHF, and AF groups for the UTBE using the RR
interval and the RR interval acceleration as the symbolization thresholds. �a�–�c� The p-values between three groups at �UT ,�� parameter set
using the RR interval as a threshold. �CHF and AF, CHF and AF, AF and NSR�. �d�–�f� The p-values between three groups at �UT ,��
parameter set using RR interval acceleration as the threshold. �CHF and AF, CHF, and AF, AF and NSR�, Units �event scale: 20 steps from
5% to 95% of the accumulative ranks for all RR interval or RR acceleration values, time scale: 20 steps from 2 to 20 s�. �g�–�i� The
sensitivity and specificity between three groups in two UTBEs and two linear properties �mean, standard deviation� �dotted line: mean, dot
dashed line: standard deviation, bold solid line: the UTBE using the RR interval acceleration, bold dotted line: the UTBE using the RR
interval�, �g� CHF and AF, �h� CHF and NSR, and �i� AF and NSR.
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gation of the measurement time of 54 subjects, we find that
these groups can be classified roughly only with the mea-
surement time of three groups. In particular, in the investiga-
tion of the student t-test, and the sensitivity and specificity,
CHF and AF groups are significantly distinguished with the
p-value of 0.005, and NSR and AF groups could be classified
with the sensitivity of 71% and the specificity of 72%. Since
the difference in the measurement time may cause the non-
stationarity and the noise effect in classification, it becomes
quite difficult to see if the good performance is due to the
internal complexity difference of the cardiac system or the
nonstationarity involved in the additional time periods of the
HR sequence.

C. Unit time block entropy (UTBE)

In order to overcome an ambiguity in comparing SBEs,
we applied the unit time entropy �UTBE� to the three HR

groups, which estimates the entropy of the activity of the
cardiac system at specific event and time scales. Since it
matches the measurement time and the number of words in
all HR sequences, we can make a reliable and direct com-
parison between entropy values of all HR groups with re-
spect to the complexity of the cardiac system. Here, the mea-
surement time is taken from the shortest measurement time
�88.8 min� among 54 subjects. The number of words is
10 652 at a unit time window �2 s�, which changes as the
unit time-scale varies and is shorter than that of SBE �N
=15 000�. All event and time-scale regions are scanned as in
the case of the SBE. In Fig. 5 we present the results of the
student t-test, and sensitivity and specificity between the
NSR, CHF, and AF groups with the UTBE.

The classification performance of the UTBE is found to
be comparable to that of the SBE, with only nearly half the
size of the RR interval sequence for the SBE. The UTBE
method also shows the importance of scale characteristics of
the three HR groups. It also shows that the RR acceleration
event contains more meaningful information than the RR
interval event in classification of healthy and two pathologi-
cal HR groups. Compared with the SBE, the p-values of the
UTBE show more fluctuation, which results from shorter HR
sequences. The main difference between two methods is that
the large p-value hump on the �UT ,�� set appears for small
event scales in Fig. 5�f�. There are some minor differences
for the high p-values regions, which can be used to deter-
mine the optimal values of parameters for the entropy analy-
sis of the HR data. These results for the UTBE method sug-
gest that the UTBE might be useful for comparing the
complexity of the interval data such as HR even with a
shorter data length compared with the conventional methods.
Moreover, we can reliably explain that the classification per-
formance is due to the difference in complexity of the inter-
nal cardiac dynamics, not the system’s additional nonstation-
arity and noise effect due to the different measurement time.

D. Comparision with the conventional method (multiscale
entropy)

In this section, we compare the performance of the UTBE
with that of multiscale entropy�MSE�, which has been
widely used in the analysis of HR �7–10�. The MSE calcu-
lates the approximate entropy �APEN� or the sample entropy
at different scales, which measures the regularity of a given
HR data. Here, we calculated the APEN with the same data
length �N=15 000�. First, in order to calculate the APEN, the
RR sequence of length N is divided into segments of length
n for which the mean values are calculated. With this coarse-
grained sequence at each scale n, the APEN is calculated
with the embedding dimension m=2, the delay �=1 �7�, and
two types of r values are used; one from the original data at
n=1 �r=0.15�D�n=1�� and the other at all n scales �r�n�
=0.15�D�n��, where D is the standard deviation. The latter
choice of r can remove the effect of variation due to the
coarse-graining process �28�. Since the MSEs for both
choices of r provide similar results, only the first case is
presented here. In Figs. 6�a� and 6�b�, we show the perfor-
mance of the MSE in the classification of three HR groups.

FIG. 6. �a� The mean and the standard deviation of APEN at
each scale n �line type: NSR �square�, CHF �star�, and AF �circle��.
�b� The best sensitivities and specificities selected from the calcu-
lation in all scales �line type: CHF vs AF �solid�, CHF vs NSR
�dot�, and AF vs NSR �dash-dot��.
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In Fig. 6�a�, the best p-values of each pair of groups in the
student t-test are p=0.008 �n=10� for NSR vs CHF, p
=0.0012 �n=4� for NSR vs AF, and p=0.17 �n=1� for CHF
vs AF. Though the mean of each group can be distinguish-
able at some scales, the deviations are, in general, too large
for unambiguous classification. Therefore we investigate the
sensitivity and the specificity as in the UTBE. Figure 6�b�
presents the best sensitivities and specificities selected from
the calculation in all scales. We obtain the best sensitivity
and specificity of 50% and 49% at the scale �n=9� for the AF
vs NSR case. This classification performance of MSE is
worse than that of the UTBE for all classification cases of
three HR groups. The UTBE provides a better classification
performance than the MSE because it searches the event and
time-scale spaces, while the MSE searches only the time-
scale. Moreover, it turns out that the event scale contains
more effective information for classification than the time-
scale as in the previous section. Therefore the UTBE ap-
proach is more useful in finding the characteristic difference
between healthy and pathologic HR groups, which can be
utilized for practical applications.

IV. CONCLUSION

In this work we expanded the multiple time-scale analy-
sis, which has recently received attention in HRV analysis,
into event and time scales. By scanning these scales, we
found that some event scales contribute most effectively to
the classification of healthy and pathological cardiac sys-
tems. In particular, we found that NSR, CHF, and AF groups
show different scale characteristics in the RR interval accel-
eration, which is more effective than the RR interval in clas-
sifying three groups based on sensitivity and specificity. We
also found that for AF and NSR groups, the UTBE and the
SBE distinguish them clearly in some event and time-scale
regions, while linear properties cannot. The systematic study

of various event and time scales of normal and pathological
HR has proven to be useful in classifying each group and
understanding the RR interval and the RR interval accelera-
tion dynamics of the veiled cardiac systems.

The RR interval data sets used for our study have varying
measurement times since the RR interval lengths are fixed in
advance due to the algorithmic convenience in most conven-
tional linear and nonlinear measures. Since the cardiac sys-
tem has several internal rhythms from yearly to secondly and
interacts incessantly with external environments, it is not
clear whether the difference in complexity is due to the in-
trinsic difference of two cardiac systems or the additional
nonstationarity or noise due to the different measurement
time. Because three HR groups can be separated roughly
only with the difference of the measurement time, such per-
formance in classification may not be always guaranteed for
other HR data sets.

Our method of the unit time block entropy �UTBE� re-
moves this ambiguity, which matches the measurement time
and the number of words at the same time in all HR groups
for comparison. The performances of the UTBE in measur-
ing the complexity of heart dynamics is found to be nearly
the same as that of the SBE, albeit with nearly half the size
of RR sequence. The UTBE with the fixed measurement time
allows us to determine reliably the dynamical complexity of
the cardiac systems. This method may be useful for compar-
ing the other unevenly sampled data set directly, and can be
extended to other HR problems, for example, the fetal dis-
tress HR for classification of normal and pathological groups
�29�. We also show its usefulness in comparison with the
multiscale entropy.
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